ISSN 1009-5624 CN 10-2021/TQ    主管:中国乐凯集团有限公司    主办:北京乐凯科技有限公司

中国知网全文收录期刊
万方数据库收录期刊
RCCSE中文学术期刊
维普资讯网/超星域出版 全文收录
中国核心期刊(遴选)数据库收录期刊
首页 > 刊期 > 2023 > 6期 > 综合:探索与发现
基于改进 MobileNet V2 轻量级网络的步态识别研究
卢兆一,赵鑫泽,代雪晶

【摘要】为了解决目前深度学习中大型网络计算复杂、难以在嵌入式等移动设备进行部署及应用的问题,在MobileNet V2网络的基础上,提出一种改进型轻量级网络进行步态识别。将CASIA-B数据集进行预处理生成步态能量图,通过调整网络中深度可分离卷积模块,使用 H-swish 激活函数并引入 SE 注意力机制 (squeeze-and-excitation networks),对行人步态进行分组实验。实验结果表明,改进后的网络模型能有效进行数据集的分类识别,模型大小为 12.55 M,在测试集上的平均识别准确率达到 94.27%,比原始网络提高了 2.29%。同时,在精度和复杂度上获得了较好的平衡,为步态识别方法在移动端等资源受限的设备上提供思路和参考。


【关键字】深度学习;步态识别;MobileNet V2 轻量级网络;步态能量图