ISSN 1009-5624 CN 10-2021/TQ    主管:中国乐凯集团有限公司    主办:北京乐凯科技有限公司

中国知网全文收录期刊
万方数据库收录期刊
RCCSE中文学术期刊
维普资讯网/超星域出版 全文收录
中国核心期刊(遴选)数据库收录期刊
首页 > 刊期 > 2022 > 12期 > 论著
基于改进 YOLOV5 算法的学生课堂行为识别研究
杨明远,左 栋

【摘要】将人工智能引入课堂教学活动,基于深度学习的方法智能识别学生在课堂上的行为,及时了解学生的上课状态,对教学改革具有积极作用。传统的学生行为识别方法有鲁棒性差,准确率不高等缺点。本文使用深度学习的方法,自建学生课堂行为数据集,在 YOLOV5 的基础上引入 CA 注意力机制,在模型检测速度不变的情况下,增强模型的鲁棒性,注意力机制从通道和空间两个维度有效提取学生课堂行为特征。仿真表明,与 Y O L O V5 模型相比,加入注意力机制的模型对抬头、低头、玩手机、举手、记笔记、睡觉、交头接耳七类学生课堂行为识别提升了 2% 左右的 mAPmean Average Precision);对睡觉、玩手机、举手行为的识别准确率达到 90%

【关键字】深度学习;学生行为识别;YOLOV5;注意力机制